
noWindows 32 Network Help
FileTRUEyesyesyesnono&About&Printyeswinntnetyes26/10/95

Windows 32 Network Extender

This extender is only for 32 bit versions of Windows

32 Bit Intel Version
AddExtender("wwnet32i.dll")

32 Bit Dec Alpha Version
AddExtender("wwnet32d.dll")

32 Bit Mips Version
AddExtender("wwnet32m.dll")

32 Bit PowerPC Version
AddExtender("wwnet32p.dll")

Other required DLL's:    none

This extender provides standard support for    computers running 32 bit versions of Windows, such as Windows NT. 
It may be used in conjunction with other 32 bit Intel extenders.

Table of Contents

Introduction
About this Help File
Installation - Using a Dll
Error Appendix

Functions

AddExtender(filename)
LastError()
Net101
NetInfo(requestcode)
NetAddDrive(user-id, pswd, net-resource, local drive, persist)
NetAddPrinter(user-id,pswd,net-resource,local device,persist)
NetCancelCon(local drive or net-resource, persist, forceflag)
NetDirDialog(flag)
NetGetCon(local drive)
NetGetUser(netname)
NetVersion()

Introduction

WIL extender Dlls are special Dlls designed to extend the built-in function set of the WIL processor.    These Dlls
typically add functions not provided in the basic WIL set, such as network commands for particular networks
(Novell, Windows for WorkGroups, LAN Manager and others), MAPI, TAPI, and other important Application
Program Interface functions as may be defined by the various players in the computer industry from time to time.   
These Dlls may also include custom built function libraries either by the original authors, or by independent third
party developers.    (An Extender SDK is available).    Custom extender Dlls may add nearly any sort of function to
the WIL language, from the mundane network math or database extensions, to items that can control fancy
peripherals, including laboratory or manufacturing equipment.

WIL extenders must be installed separately.    Up to 10 extender Dlls may be added.    The total number of added
items may not exceed 100 functions and constants.    The AddExtender function must be executed before
attempting to use any functions in the extender library.    The AddExtender function should be only executed once
in each WIL script that requires it.

INSTALLATION - Using a Dll.

To use a WIL extender, at the top of each script in which you use network commands add the appropriate extender
with the AddExtender command.

AddExtender(extender filename)

Remember you can add up to 10 extender Dlls or a combined total of 100 functions.

About this Help File
This extender adds certain network capability to    the Windows Interface Language (WIL) processing engine.   
Please refer to the WIL Reference Manual for an introduction to WIL, as well as for complete documentation of
the many functions available in WIL and the programs that use it.    This help file includes only topics and functions
which are exclusive to this particular WIL Network Extender.

Notational Conventions
Throughout this manual, we use the following conventions to distinguish elements of text:
ALL-CAPS

Used for filenames.
Boldface

Used for important points, programs, function names, and parts of syntax that must appear as shown.
system

Used for items in menus and dialogs, as they appear to the user.
Small fixed-width

Used for WIL sample code.
Italics

Used for emphasis, and to liven up the documentation just a bit.

Acknowledgments
This network extender developed by Morrie Wilson.

Documentation written by Tina Browning.

Contact Information
Wilson WindowWare, Inc.
2701 California Ave SW    ste 212
Seattle, WA 98116

Orders:       (800) 762-8383
Support:    (206) 937-9335
Fax:       (206) 935-7129

Installation - Using a Dll
To use a WIL extender, at the top of each script in which you use network commands add the appropriate extender
with the AddExtender command.

AddExtender(extender filename)

Remember you can add up to 10 extender Dlls or a combined total of 100 functions.

AddExtender(filename)
Installs a WIL extender Dll.

Syntax:
AddExtender(filename)

Parameters:
(s) filename WIL extender Dll filename.

Returns:
(i) @TRUE if function succeeded.

@FALSE if function failed.

WIL extender Dlls are special Dlls designed to extend the built-in function set of the WIL processor.    These Dlls
typically add functions not provided in the basic WIL set, such as network commands for particular networks
(Novell, Windows for WorkGroups, LAN Manager and others), MAPI, TAPI, and other important Application
Program Interface functions as may be defined by the various players in the computer industry from time to time.   
These Dlls may also include custom built function libraries either by the original authors, or by independent third
party developers.    (An Extender SDK is available).    Custom extender Dlls may add nearly any sort of function to
the WIL language, from the mundane network, math or database extensions, to items that can control fancy
peripherals, including laboratory or manufacturing equipment.

Use this function to install extender Dlls as required.    Up to 10 extender Dlls may be added.    The total number of
added items may not exceed 100 functions and constants.    The AddExtender function must be executed before
attempting to use any functions in the extender library.    The AddExtender function should be only executed once
in each WIL script that requires it.

The documentation for the functions added are supplied either in a separate manual or disk file that accompanies the
extender Dll.

Example:
; Add vehicle radar processing dll controlling billboard visible to
; motorists, and link to enforcement computers.
; The WIL Extender SPEED.DLL adds functions to read a radar speed
; detector(GetRadarSpeed) , put a message on a billboard visible to
; the motorist (BillBoard), take a video of the vehicle (Camera), and
; send a message to alert enforcement personnel (Alert) that a
; motorist in violation along with a picture id number to help
; identify the offending vehicle and the speed which it was going.
;
AddExtender("SPEED.DLL")
BillBoard("Drive Safely")
While @TRUE

; Wait for next vehicle
while GetRadarSpeed()<5 ; if low, then just radar noise

Yield ; wait a bit, then look again
endwhile
speed=GetRadarSpeed() ; Something is moving out there
if speed < 58

BillBoard("Drive Safely") ; Not too fast.
else

if speed < 63
BillBoard("Watch your Speed") ; Hmmm a hot one

else
if speed < 66
BillBoard("Slow Down") ; Tooooo fast

else
BillBoard("Violation Pull Over")
pictnum = Camera() ; Take Video Snapshot
Alert(pictnum, speed); Pull this one over

endif
endif

endif
endwhile

See Also:
DllCall (found    in main WIL documentation)

LastError()
Returns the most-recent error encountered during the current WIL program.

Syntax:
LastError()

Parameters:
None

Returns:
(i) most-recent WIL error code encountered.

In addition to the normal behavior of the LastError function documented in the WIL Reference Guide, if the most
recent error occurred in a WIL Extender, then a number assigned by the Extender will be returned.    The numbers
are documented in the appendix of this Extender document.

It may be possible to obtain error numbers not documented.    The "Notes" section of the WIL manual has been
provided to allow you to keep records of undocumented error codes.

Example:

;Access script with some error checking
;
OnCancel="Exit" ; Setup default "cancel" processing

retcode = AddExtender("wwn3x16i.dll") ;Load in Novell 3 extender
if retcode == 0

;This code should not even get the chance to execute.
;Fail-safe error checking here
Message("Error","Failed to load Novell 3 extender")

endif

MyServer="\\DEPT07"
UserID="FRED"

ErrorMode(@OFF) ;Tell WIL we want to handle errors in script

:TRYPSWD
OnCancel = "goto DETACH"
Pswd=AskPassword("Login to Server %MyServer%", "Enter Password for %UserID%")
OnCancel = "exit"
retcode = n3Attach(MyServer, UserID, Pswd)
if retcode == 0

errcode=LastError()
if errcode == 128

Message("Bad Password Error","Bad password supplied for Userid %UserID%")
goto TRYPSWD

endif
Message("Login Error %errcode%","Login Failure")
if n3GetMapped(MyServer)=="" then n3Detach(MyServer)
exit

endif

; Find drive to map. But don't use W, X, Y, or Z just to
; make it more interesting.
drives = DiskScan(0)
for I=1 to 4

nono = strcat(num2char(char2num("V") + I) , ":")
a = ItemLocate(nono, drives, " ")
if a!=0 then drives = ItemDelete(a, drives, " ")

next

if ItemCount(drives, " ") == 0
Message("Error", "No drives available for mapping")
if n3GetMapped(MyServer)=="" then n3Detach(MyServer)
exit

 endif

usedrive=ItemExtract(drives,1," ")

n3Map("\\DEPT07\SYS\Excel", usedrive)
errcode=LastError()
if errcode != 0 ; Map Failue

Message("Map Error %errcode%","Map to %usedrive% failed")
if n3GetMapped(MyServer)=="" then n3Detach(MyServer)
exit

endif

OrigDir=DirGet()
DirChange(strcat(usedrive,"\"))
RunWait("EXCEL.EXE","/E")
errcode = LastError()
if errcode != 0

Message("RunWait Failed ???","Errorcode=%errcode%")
;drop thru to disconnect

endif
DirChange(OrigDir)
n3MapDelete(usedrive)

:DETACH
; Just in case user has other mappings to server, only
; detach (logout) from server if no other mappings exist
if n3GetMapped(MyServer)=="" then n3Detach(MyServer)
exit

:CANCEL
%OnCancel%
Message("Error","Oncancel variable improperly set up")
exit

See Also:
Debug, ErrorMode (both found    in main WIL documentation)

Net101
All network functionality for WIL is performed via "WIL Extenders", add-on Dlls for WIL, which contain Network
commands for assorted networks.

NetInfo is the only WIL network function.    It returns the types of the networks currently active on the local
machine, and can be used to help determine which network extenders should be loaded in multi-network
environments.

Documentation for the various network extenders are found either in a manual for a particular extender or in an
associated disk file.

See Also:
NetInfo, AddExtender, DllCall (found    in main WIL documentation)

NetInfo(requestcode)
Determines network(s) installed.

Syntax:
NetInfo(requestcode)

Parameters:
(i) requestcode 0 for primary network name.

1 for secondary subnet list.

Returns:
(s) Primary network name for request code 0, or

Secondary network list for request code 1.

Use this function to determine the network type(s) running on a workstation.    When running in a mixed network
environment, it may be important to be able to determine the types of networks running on a workstation so as to be
able to load the appropriate network extender Dlls and issue the corresponding commands.

NetInfo(0) will return the name of the primary network, or will return "MULTINET" , which indicates the Windows
multinet driver is active and the secondary subnet list should be queried.    NetInfo(0) will return one of the
following strings:

NetInfo(0) return values:
NONE No network installed
MULTINET Multinet driver installed, see subnet codes.
MSNET Microsoft Network
LANMAN LAN Manager
NETWARE Novell NetWare
VINES Banyan Vines
10NET 10 Net
LOCUS Locus
SUNPCNFS SUN PC NFS
LANSTEP LAN Step
9TILES 9 Tiles
LANTASTIC Lantastic
AS400 IBM AS/400
FTPNFS FTP NFS
PATHWORK DEC PathWorks
OTHER1 Other (code 1)
OTHER2 Other(code 2)
UNKNOWN Other (unknown)

If NetInfo(0) returned "MULTINET" then NetInfo(1) will return one or more of the following in a space delimited
list:

NetInfo(1) return values:
NONE No networks active
MSNET Microsoft Network
LANMAN LAN Manager
WINNET Windows Network (Windows for Workgroups, etc)
NETWARE Novell Netware
VINES Banyan Vines
OTHER2 Other (code 0x20)
OTHER4 Other (code 0x40)
OTHER8 Other (code 0x80)

Example:
a=NetInfo(0)
if a=="MULTINET"

b=NetInfo(1)
count=ItemCount(b," ")
Message("Multinet supporting %count% networks", b)

else
Message("Installed Network", a)

endif

See Also:
Net101, AddExtender, DllCall    (found    in main WIL documentation)

NetAddDrive(user-id, pswd, net-resource, local drive,
persist)
Maps a drive.

Syntax:
netAddDrive(user-id, pswd, net-resource, local-drive, persist)

Parameters:
(s) user-id user-id or @DEFAULT for current user
(s) pswd password or @DEFAULT for current password or @NONE for no

password
(s) net-resourceUNC netname of net resource
(s) local drive local drive id      e.g. ("K:") or @NONE for connect only
(s) persist @TRUE    Specifies persistent connection, one that will automatically

reconnect when you reboot windows.    @FALSE Specifies a temporary
connection.

Returns:
(i)       @TRUE if the drive was mapped;

      @FALSE the drive was not mapped.

This function allows a connection to be made to a net resource, and, optionally, a drive to be mapped to the net
resource.

Example:
AddExtender("wwnet32i.dll")
netAddDrive(@default,@default,"\\SERVER\PUB\EXCEL","E:",@false)
RunWait("E:\EXCEL.EXE","\E")
netCancelCon("E:",@false,@false)

See Also:
netDirDialog, netCancelCon

NetAddPrinter(user-id, pswd, net-resource, local
device, persist)
Maps a printer resource to a local port.

Syntax:
netAddPrinter(user-id, pswd, net-resource, local device, persist)

Parameters:
(s) user-id user-id or @DEFAULT for current user
(s) pswd password or @DEFAULT for current password or @NONE for no

password
(s) net-resourceUNC netname of net resource
(s) local device local printer port      e.g. ("lpt1") or @NONE for connect only
(s) persist @TRUE    Specifies persistent connection, one that will automatically

reconnect when you reboot windows.    @FALSE Specifies a temporary
connection.

Returns:
(i)       @TRUE if the port was mapped;

      @FALSE the port was not mapped.

This function allows a connection to be made to a net resource, and, optionally, a local device to be mapped to the
net resource.

Example:
AddExtender("wwnet32i.dll")

netAddPrinter(@default,@default,"\\SERVER\LJ4","lpt2",@false)

See Also:
netDirDialog, netCancelCon

NetCancelCon(local drive or net resource, persist,
forceflag)
Breaks a network connection.

Syntax:
netCancelCon(local drive or net resource, persist, forceflag)

Parameters:
(s) local drive or net resource the mapped device or net resource.
(s) persist @TRUE    - update persistent connection table ; @FALSE -

do
not update persistent connection table to remove this
device

(i) forceflag (see below)

Returns:
(i) @TRUE if successful; @FALSE if unsuccessful.

If a net resource is specified, all connections to the net resouce will be closed    If a mapped local drive is
specified, then only that connection will be closed.   

If persist is set to @TRUE, then the persistent connection will be updated to remove this drive mapping
from the list of persistent connections.

 If forceflag is set to 0, netCancelCon will not break the connection if any files on that connection are
still open.    If forceflag is set to 1, the connection will be broken regardless.

Example:
AddExtender("wwnet32i.dll")
netAddDrive(@default,@default,"\\SERVER\PUB\EXCEL","E:",@false)
RunWait("E:\EXCEL.EXE","\E")
netCancelCon("E:",@false,@false)

See Also:
netAddDrive, netDirDialog

NetDirDialog(flag)
Brings up a network drive connect/disconnect dialog box

Syntax:
netDirDialog(flag)

Parameters:
(i) flag - @FALSE=disconnect dialog

@TRUE=connect dialog

Returns:
(i) 1

This function prompts the user with either a standard Connect or Disconnect dialog box.    The user may
make or break network drive mappings via the dialog box.

Example:
AddExtender("wwnet32i.dll")
err=netDirDialog(@TRUE)
runwait("excel.exe", "/e")
netDirDialog(@FALSE)

See Also:
netAddDrive

NetGetCon(local drive)
Returns the name of a connected network resource.

Syntax:
netGetCon(local name)

Parameters:
(s) local name local drive name.

Returns:
(i) name of a network resource.

netGetCon returns the name of the network resource currently connected to a "local name".    If the
resource is not mapped a null string will be returned.

Example:
AddExtender("wwnet32i.dll")
netrsrc=netGetCon("K:")
if netrsrc=="" then Message("Drive K: is","not mapped"
else Message("Drive K: is mapped to",netrsrc

See Also:
netAddDrive, netDirDialog

NetGetUser(netname)
Returns the name of the user currently logged into the network.

Syntax:
netGetUser(netname)

Parameters:
(s) netname - name of network or @DEFAULT for default network.

Returns:
(s) the user name.

This function will interrogate the network and return the current user name.    @default will return the user
id of the local user.

Example:
AddExtender("wwnet32i.dll")
username=netGetUser(@default)
Message("Current User is",username)

See Also:
netGetCon

NetVersion()
Returns the version of this Extender DLL.

Syntax:
netVersion()

Parameters:
none

Returns:
(i) the version of number of this extender Dll.

This function is used to check the version number of this Dll in cases where older DLL's exist and
alternate processing is desirable.    Version numbers of newer versions will be larger than that of older versions.

Example:
AddExtender("wwnet32i.dll")
a=netVersion()
Message("Dll Version",a)

Error Appendix
"185:    Bad name for local drive or printer" 
"499:    Unrecognised network error #" 
"500:    Access is denied." 
"501:    LocalName    is already connected. " 
"502:    Device and resource do not match. " 
"503:    LocalName is invalid. " 
"504:    ResourceName is not valid or cannot be located. "                                     
"505:    The user profile is in an incorrect format. " 
"506:    Unable to open the user profile to process persistent connections. "
"507:    LocalName is already in the user profile. " 
"508:    Password is invalid. " 
"509:    Network component is not started or invalid " 
"510:    The network is not present. " 
"511:    Device in use" 
"512:    Device not currently connected" 
"513:    Open files on device and FORCE=@FALSE" 
"514:    Device not currently available" 
"515:    Invalid Password" 
"516:    Insufficient memory." 
"517:    Not supported in current NT version (Invalid Parameter)"                       

